Global gene expression analysis of the shoot apical meristem of maize (Zea mays L.)

نویسندگان

  • Kazuhiro Ohtsu
  • Marianne B Smith
  • Scott J Emrich
  • Lisa A Borsuk
  • Ruilian Zhou
  • Tianle Chen
  • Xiaolan Zhang
  • Marja C P Timmermans
  • Jon Beck
  • Brent Buckner
  • Diane Janick-Buckner
  • Dan Nettleton
  • Michael J Scanlon
  • Patrick S Schnable
چکیده

All above-ground plant organs are derived from shoot apical meristems (SAMs). Global analyses of gene expression were conducted on maize (Zea mays L.) SAMs to identify genes preferentially expressed in the SAM. The SAMs were collected from 14-day-old B73 seedlings via laser capture microdissection (LCM). The RNA samples extracted from LCM-collected SAMs and from seedlings were hybridized to microarrays spotted with 37 660 maize cDNAs. Approximately 30% (10 816) of these cDNAs were prepared as part of this study from manually dissected B73 maize apices. Over 5000 expressed sequence tags (ESTs) (about 13% of the total) were differentially expressed (P < 0.0001) between SAMs and seedlings. Of these, 2783 and 2248 ESTs were up- and down-regulated in the SAM, respectively. The expression in the SAM of several of the differentially expressed ESTs was validated via quantitative RT-PCR and/or in situ hybridization. The up-regulated ESTs included many regulatory genes including transcription factors, chromatin remodeling factors and components of the gene-silencing machinery, as well as about 900 genes with unknown functions. Surprisingly, transcripts that hybridized to 62 retrotransposon-related cDNAs were also substantially up-regulated in the SAM. Complementary DNAs derived from the LCM-collected SAMs were sequenced to identify additional genes that are expressed in the SAM. This generated around 550 000 ESTs (454-SAM ESTs) from two genotypes. Consistent with the microarray results, approximately 14% of the 454-SAM ESTs from B73 were retrotransposon-related. Possible roles of genes that are preferentially expressed in the SAM are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling the Morphometric Evolution of the Maize Shoot Apical Meristem

The maize (Zea mays subsp. mays L.) shoot apical meristem (SAM) is a self-replenishing pool of stem cells that produces all above-ground plant tissues. Improvements in image acquisition and processing techniques have allowed high-throughput, quantitative genetic analyses of SAM morphology. As with other large-scale phenotyping efforts, meaningful descriptions of genetic architecture depend on t...

متن کامل

Involving undergraduates in the annotation and analysis of global gene expression studies: creation of a maize shoot apical meristem expression database.

Through a multi-university and interdisciplinary project we have involved undergraduate biology and computer science research students in the functional annotation of maize genes and the analysis of their microarray expression patterns. We have created a database to house the results of our functional annotation of >4400 genes identified as being differentially regulated in the maize shoot apic...

متن کامل

CORKSCREW1 defines a novel mechanism of domain specification in the maize shoot.

In higher plants, determinate leaf primordia arise in regular patterns on the flanks of the indeterminate shoot apical meristem (SAM). The acquisition of leaf form is then a gradual process, involving the specification and growth of distinct domains within the three leaf axes. The recessive corkscrew1 (cks1) mutation of maize (Zea mays) disrupts both leaf initiation patterns in the SAM and doma...

متن کامل

Diversity of Maize Shoot Apical Meristem Architecture and Its Relationship to Plant Morphology

The shoot apical meristem contains a pool of undifferentiated stem cells and controls initiation of all aerial plant organs. In maize (Zea mays), leaves are formed throughout vegetative development; on transition to floral development, the shoot meristem forms the tassel. Due to the regulated balance between stem cell maintenance and organogenesis, the structure and morphology of the shoot meri...

متن کامل

WOX gene phylogeny in Poaceae: a comparative approach addressing leaf and embryo development.

The phylogeny based on the homeodomain (HD) amino acid sequence of the WOX (WUSCHEL-related homeobox gene family) was established in the 3 major radiations of the Poaceae family: Pooideae (Brachypodium distachyon), Bambusoideae (Oryza sativa), and Panicoideae (Zea mays). The genomes of all 3 grasses contain an ancient duplication in the WOX3 branch, and the cellular expression patterns in maize...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant Journal

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2007